- Note 2- Linear Regression
- Note 3- Feature Engineering
- Note 4- MLE and MAP for Regression
- Note 5- Bias-Variance Tradeoff
- Note 6- Multivariate Gaussians
- Note 7- MLE and MAP Part 2
- Note 8- Kernels and Ridge Regression
- Note 9- Total Least Squares
- Note 10- PCA
- Note 11- CCA
- Note 12- Optimization
- Note 13- Gradient Descent
- Note 14- Neural Networks
- Note 15- Training Neural Networks
- Note 16- Generative vs. Discriminative Classification
- Note 18- Gaussian Discriminant Analysis
- Note 19- Clustering
- Note 20- Support Vector Machines
- Note 21- Generalization and Stability
- Note 22- Duality
- Note 25- Decision Trees
- Note 26- Boosting
- Note 27- Convolutional Neural Networks
- machlearn
- math4ml